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Abstract

Detect-and-Avoid (DAA) capabilities are critical for autonomous opera-
tions of small unmanned aircraft systems (sUAS). Traditionally DAA
systems for large aircraft have been ground and radar-based. Due to
the size, weight, and power (SWaP) constraints of sUAS, current DAA
systems rely mainly on vision-based sensors and ADS-B (Automatic De-
pendent Surveillance-Broadcast) transponders. However, not all flying
objects have transponders. Therefore, a vision-based DAA capability
needs to exist for safe low-altitude autonomous flight.

In this work, we present the vision-based DAA problem, particularly the
problem of aircraft detection and tracking. At long distances, the visual
appearance of planes and helicopters is usually tiny in the context of the
whole image. The problem is detecting tiny objects in high-resolution
videos taken from a moving camera. Historically, this problem has been
tackled using a multi-stage image processing pipeline involving: (1)
ego-motion estimation, (2) background/foreground detection using
morphological operations, and (3) tracking using temporal filtering.
With the advent of deep learning, modern approaches rely on learning-
based object detection methods. However, traditional object detection
approaches typically do not scale well for this task due to real-time
performance constraints.

Our approach to solving this problem follows a two-stage pipeline: (1)
ego-motion estimation and (2) detection and tracking. Both of these
stages are fully-convolution neural networks that can scale to large reso-
lution inputs. They are trained on a labeled dataset released by Amazon
Prime Air containing 3.3M+ images of airplanes, helicopters, drones,
and other flying objects. We also developed our own aircraft data col-
lection systems and designed a custom vision-based DAA payload for
in-flight encounters. Through empirical evaluation of real-world data,
our approach is compared with two baseline detection and tracking
architectures and is shown to be superior. Analyzing our quantitative
results in the context of DAA industry standard (ASTM F3442/F3442M
- 20) we also show that the proposed method can satisfy the visual DAA
surveillance requirements for certain classes of unmanned aircraft with
a minimum cruise speed of 60-90kts, minimum turn rate of 21-31deg/s,
and a minimum climb rate of 250-500ft/min.
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Chapter 1

Introduction

1.1 Detect and Avoid

Mid-air collision (MAC) and near mid-air collision (NMAC) risk are concerns for
both manned and unmanned aircraft operations, especially in low-altitude shared
airspace near busy non-towered airports. In order to mitigate these risks, Detect-
and-Avoid (DAA) technology has been extensively researched for Unmanned
Aircraft Systems (UAS) [6, 34]. DAA, also commonly referred to as sense (or see)
and avoid (SAA) is defined as “the capability of a UAS to remain well clear from and
avoid collisions with other airborne traffic.” [11] The well clear boundary as defined
by NASA [33] mathematically characterizes a volume, referred to as the Well Clear
Violation (WCV) volume, such that aircraft pairs jointly occupying this volume are
considered to be in a well clear violation. In visual flight conditions, NMAC/MAC
threat mitigation is carried out by a pilot by visually detecting and avoiding other
aircraft to remain well clear [34] of them. Typically for medium to large unmanned
systems, an active onboard collision avoidance system such as the Traffic Alert
and Collision Avoidance System (TCAS-II) or the Airborne Collision Avoidance
System (ACAS-X) is used. For unmanned aircraft, ACAS-Xu or ACAS-sXu is
used. However, these methods typically only work with transponder-equipped
intruder aircraft or cooperative aircraft. The most commonly used transponder is
the Automatic Dependent Surveillance - Broadcast (ADS-B). ADS-B out broadcasts
information about an aircraft’s GPS location, altitude, ground speed and other data
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1. Introduction

to ground stations and other aircraft. DAA is also an essential requirement for
beyond visual line of sight (BVLOS) operations in the National Airspace System
(NAS) such as autonomous drone delivery systems. However, not all intruder
aircraft are equipped with ADS-B transponders (these are called non-cooperative
aircraft) and thus sUAS usually have to rely on vision-based DAA systems due
to size and weight limitations. Fig. 1.1 from NASA shows the key areas where
airborne detect-and-avoid needs to be integrated into the National Airspace. One

Figure 1.1: Image credits: NASA. Purple-dashed lines show the cases where DAA tech-
nology is needed to be used for safe sUAS integration into the National Airspace.

of the major roadblocks to civil UAS integration is the lack of complete Detect and
Avoid (DAA) capability. Human vision is the last line of defence against a mid-air
collision and is thus critical for aviation safety. Therefore, in order to assist pilots
mitigate mid-air collision threats, machine vision can be used to alert the pilot of
potential aircraft (and other objects) in the sky. Due to size, weight, and power
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1. Introduction

constraints of sUAS, radar is not a realistic solution cost-wise. Machine vision
has been a promising direction for research in this domain [30]. In this thesis, we
present a machine vision-based solution for detecting and tracking aircraft.

1.2 Contributions and Outline

1.2.1 Contributions

The key contributions of this thesis are as follows: (1) Two-stage visual DAA
system with a frame alignment network for aligning successive image frames from
a moving camera using predicted sparse optical flow, and CenterTrack-based object
detection/tracking along with object distance prediction directly from the image.
(2) Onboard inference on a six-camera visual DAA payload. (3) Automatic data
collection setup at Allegheny County Airport (AGC) with an automatic labeling
pipeline.

1.2.2 Outline

The organization of this thesis is as follows. Chapter 2 introduces prior work
done in this domain, including classical approaches and more recent learning-
based approaches; it also introduces prior work in the domain of small object
detection since that forms a core component of the system. Chapter 3 contains
information about the various datasets used for this project. It explicitly describes
three datasets, two of which are used for training and evaluation. The third dataset
describes our work in auto labeling with the help of a static 4-camera dataset.
Chapter 4 describes each component of our visual DAA system in detail, along
with supporting diagrams. Chapter 5 presents both qualitative and quantitative
results of the proposed method compared with two baseline approaches. Finally,
chapter 6 summarizes our work and outlines future directions to improve the
system.
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Chapter 2

Background

With the advent of modern learning-based object detection and tracking, the state-
of-the-art visual DAA approaches mainly rely on deep neural networks. However,
there are many relevant methods and techniques that come from the pre-deep
learning era. In this chapter, a summary of the classical methods along with
the learning-based methods is presented. Finally, related work for small object
detection, which lies at the core of the vision-based DAA is also summarized.
Fig. 2.1 shows a typical three-stage pipeline that is commonly used in almost all
vision-based DAA methods. If not all, most DAA pipelines used at least one of

Figure 2.1: Commonly used multi-stage pipeline for vision-based DAA.

the three stages. The approach we describe in this thesis uses all the stages in the
pipeline.

2.1 Classical Methods

Traditionally, the main solutions for visual DAA included a modular design with
various well-known techniques commonly used in classical computer vision [5, 9,
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2. Background

12, 22, 23, 31]. The primary modules are the following in sequential order: frame
stabilization, background-foreground estimation using morphological operations,
temporal filtering, detection, and tracking. The frame stabilization step is typically
handled using either optical flow-based approaches [29] or image registration using
feature matching [43, 45]. We use a deep neural net in our approach to predict
the flow between successive frames and use that flow to estimate a homography
for frame alignment. [44] used regression-based motion compensation both in
the horizontal and vertical directions. The morphological operations are used to
enhance the signal of the intruder aircraft. [5, 9, 23] used background subtraction.
Machine learning-based approaches have also been used to learn descriptors of
the aircraft [9, 40, 44] using methods such as SVMs. Naively using morphological
operations would result in false positives. Hence a temporal filtering stage is used.
Track-before-detect is a commonly used technique for detecting low-SnR targets in
infrared imagery [13], and several people have tried using it in vision-based DAA.
Alternative approaches include tracking using Kalman filter banks [35], Hidden
Markov Models [21, 23, 32], and Viterbi-based filtering [5, 23].

2.2 Deep Learning Methods

Modern visual DAA approaches heavily rely on deep learning-based object detec-
tion and tracking. Detection is done typically using CNNs [7, 17, 18, 47]. The key
challenge in visual detection is detecting tiny objects in large resolution images.
Due to the very low signal-to-noise ratio, standard anchor-based methods such
as YOLO and R-CNN are not ideal for small object detection. Keypoint-based
architectures [10] are much more suitable for small objects. Related work can also
be found in the domain of face detection [16], aerial imagery [25], and pedestrian
tracking [53]. Since computational efficiency is a key requirement for DAA sys-
tems, state-of-the-art approaches include fully convolution networks with heatmap
prediction [18, 19].

Tracking-by-detection is the commonly used paradigm for aircraft tracking [3].
A tracking management system is typically maintained to account for the birth
and death of new tracks and associate new detections to existing tracks using
the Hungarian algorithm [9, 23]. In multi-object tracking, typically, a metric like

6



2. Background

Intersection-over-Union (IoU) for bounding boxes is used to determine the as-
signment. However, the IoU metric becomes too sensitive to slight deviations in
bounding box positions for small objects. In that case, an integrated detection and
tracking approach such as [52] is a better choice and our approach is based on that.

2.3 Small Object Detection

DAA systems need to detect and track potential intruders at long distances for suffi-
cient reaction time for planning and avoidance. Thus, at the core of the vision-based
DAA lies the problem of small object detection. Modern neural network-based
object detection methods do not perform better on small objects than on medium
and larger-sized objects. This is mainly due to a lack of discernible features within
the object bounding box context. Standard object detection architectures (such as
YOLO or Faster R-CNN) do not have high-resolution feature maps to pick up the
small object features. In order to address this issue, [4] uses a region context net-
work to pool high-resolution image features from the early stage convolutions and
then uses region proposal networks downstream (similar to R-CNN) for prediction.
Feature pyramid networks (FPN) [15, 26] have been a popular approach to boost
small object detection performance by combining higher and lower resolution
feature maps, but they add computational burden. In the context of face detection,
[16] uses a coarse 3-level pyramid and fixed-size templates on a fully convolutional
network (FCN) to find tiny faces within an image.

One of the significant applications of small object detection is in the domain
of satellite imagery and remote sensing [24, 38, 42]. Remote sensing is closely
related to our work since the inputs to our vision-based DAA algorithm are very
high-resolution images with tiny objects to detect. However, most remote sensing
methods are very computationally expensive and run offline. Due to the online
requirements of our use case, we cannot afford a high computational burden and,
therefore, cannot handle heavy two-stage methods. We thus rely on a backbone
architecture that facilities high-resolution feature maps [51] and use a single-stage
detector.
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Chapter 3

Datasets

There are not many widely available flying object datasets in the context of the
DAA problem. The Amazon Prime Air Airborne Object Tracking Dataset is the only
publicly available large-scale vision-based DAA dataset with annotated bounding
box and range information. We designed two static data collection setups for this
project and deployed them at local Pittsburgh airports (KAGC and KBTP) for auto-
mated data collection and annotation. We also developed our own DAA hardware
for data collection and onboard inference. The following sections describe each of
the data sources further.

3.1 Airborne Object Tracking (AOT) Dataset

This dataset was released in 2021 as part of the Airborne Object Tracking Chal-
lenge [2] organized by AIcrowd in partnership with Amazon Prime Air. Fig. 3.1
(which is taken from [2]) shows a quick overview of the dataset. It is a collection of
around 5000 flight sequences of 120 seconds each at 10Hz resulting in 164 hours of
total flight data. There are a total of 3.3M+ labeled image frames containing air-
borne objects. Helicopters and Airplanes are the primary labels, but there are also
examples of birds and drones. The image resolution is 2448x2048, and the images
are 8-bit grayscale. Along with bounding box and class labels, the annotations also
include range information of the aircraft for a part of the dataset. The range mainly
varies from 600 to 2000 meters (25-75 percentiles). The area of the objects labeled
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3. Datasets

Figure 3.1: AOT dataset overview showing (a) sample objects in the full-resolution image
with zoomed-in view, (b) object area vs distance plot, (c) distribution of object center within
the image space, and (d) object type instances. Images are taken from the AOT challenge
page [2].

vary from 4 to 1000 sq pixels. Among the planned airborne encounters, among
55% of them would qualify as potential collision trajectories. 80% of the targets are
above the horizon, 1% on the horizon, and 19% below the horizon. The dataset also
captures different sky and visibility conditions: 69% of the sequences have good
visibility, 26% have medium visibility, and 5% exhibit poor visibility conditions.
We use a train/val split of 90/10 to train and evaluate models on this dataset.

10



3. Datasets

(a) X6C DAA payload (b) DJI M600 ownship w/ payload

(c) Inflight Cessna w/ payload

Figure 3.2: In-house assembled vision-based DAA payload. (a) The onboard X6C payload
is powered using an NVIDIA Xavier AGX dev kit. It has six Sony IMX264 global shutter
cameras covering a total of around 220◦ horizontal FOV and 48◦ vertical FOV. (b) We
mounted the payload onboard a DJI M600 to collect near collision encounters with other
drones and helicopters. (c) The payload can also be mounted inside a Cessna aircraft for
inflight data collection.

3.2 TartanX6C Dataset

We also designed our own vision-based DAA payload containing six Sony IMX264
cameras spanning a total of approximately 220◦ FOV horizontally in total and 48◦

vertically. The payload uses an NVIDIA Xavier AGX 32GB dev kit to handle the
image processing. The payload also contains a 3DM-GQ7 GNS/INSS module with
a dual-antenna setup for state estimation and ground truth. It also has an ADS-B

11



3. Datasets

receiver. This vision payload was used in DAA field tests involving DJI drones
and a Bell helicopter, where the vehicles were flown in near-collision trajectories.
It was also used to collect about 7 hours of inflight data from inside a Cessna 172.
We have manually labeled a subset of this dataset for evaluation. The evaluation
set contains seven sequences of General Aviation (GA) aircraft, three sequences
of Helicopters, and eight sequences of multi-rotor UAVs. This dataset was only
used for evaluation and no training and therefore serves as our test dataset. Figs.
[5.1, 5.2, 5.3, 5.4] later in this document show detection results on sample data
collected by this payload.

3.3 KAGC Dataset

We partnered with Allegheny County Airport (AGC) to conduct a research study
on learning to predict aircraft traffic patterns in a socially-aware context [39]. As
a part of this study, we have also installed a 4-camera setup (same hardware as
TartanX6C) to capture videos of aircraft within an 8km range of the AGC runways
using a Stratux ADS-B receiver [48]. Fig. 3.3 shows the setup. Videos and the ADS-
B data (containing GPS and altitude information of aircraft) are saved to disk based
on time synchronization. The system automatically collects data from sunrise to
sunset every day. Using this data collection setup and the object detection models,
we can automatically generate new bounding box labels of aircraft seen in the
videos using their recorded 3D position data. The automatic label generation
pipeline consists of the following two major components.

3.3.1 Extrinsic Camera Calibration

We assume that the 4-camera setup is located at the origin of a north-east-down
(NED) world reference frame where the positive z-axis points towards the earth’s
center and the positive x-axis points towards True North. Given all the relevant in-
formation, such as GPS coordinates and altitudes, we can compute the 3D position
of aircraft using geodesics. Given an aircraft 3D position P ∈ R3 in the world refer-
ence frame, the corresponding image frame location in homogeneous coordinates

12



3. Datasets

Figure 3.3: Static 4-camera setup mounted on a hangar at Allegheny County Airport
(AGC). This data collection setup is remotely monitored and can automatically capture
aircraft data (ADS-B + video) from sunrise to sunset everyday.

for camera i (i = 1, . . . , 4) is given by the following perspective projection:

pi = Ki[Ri|ti]P (3.1)

where Ki is a known 3× 3 intrinsic matrix for camera i, and [Ri|ti] constitutes
the 3× 4 extrinsic matrix of camera i. We use the PnP-RANSAC algorithm to
estimate [Ri|ti] using eqn 3.1. Using time synchronization, the 2D correspondences
for the recorded 3D observations are manually labeled using a custom labeling
software. Since the setup is static, this is a one-time calibration step that gives us
the projection matrix for camera i with which we can project new 3D aircraft data.

3.3.2 Automatic Label Generation

New bounding box labels for object detection can be generated by applying our
object detectors to new aircraft videos. Since the precision of any neural network-
based object detection method is not 100%, there are false positives. These false-
positive labels can either be manually removed or they can be rejected automatically
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based on a simple criterion where only the predicted bounding box closest to the
projected image point is chosen. The goal of the auto labeling pipeline is to create

Figure 3.4: Visualization of auto-labeling pipeline. The reprojected point based on ADS-B
is shown in the blue circle. The bounding boxes are predicted by the detector and it
can be in the bottom of the image, there are false-positives. Using the reprojected point,
we can reject those false-positives for new ground truth label generation (chosen label is
highlighted in the blue).

a new large-scale labeled aircraft dataset with both bounding box and distance
annotations.

3.4 Summary

In this chapter, we presented three different datasets relevant to the problem
of aircraft detection and tracking. The first dataset, AOT, is a large-scale object
detection and tracking dataset for aircraft and helicopters created by Amazon
Prime Air. This serves as training data for the neural networks in our proposed
system. The second dataset, TartanX6C, is our evaluation dataset collected by flying
drones and helicopters towards each other in a near mid-air collision situation
(with the help of safety pilots). The third dataset, KAGC, is a static 4-camera setup
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that can automatically capture aircraft data based on their relative distance to the
setup. This is mainly used to investigate the problem of generating bounding box
labels automatically based on 3D aircraft position and the existing detector.
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Chapter 4

Aircraft Detection and Tracking

The overall system design consists of the following four sequential modules: (1)
Motion Estimation, (2) Detection and Tracking, (3) Secondary Classification, and
(4) Intruder State Update. Fig. 4.8 outlines the overall system design in detail.
The inputs are two successive grayscale image frames It, It−1 ∈ RH×W where
H ×W are the dimensions of the input frames. We utilize the full image resolution
of 2448 × 2048 during inference to maximize the chances of detection at long
ranges (≥ 1km). The final outputs of the system are a list of tracked objects with
bounding box coordinates, track ID, 2D-KF state (containing pixel-level velocity
and acceleration), estimated range, and time to closest point of approach (tCPA).
The following subsections describe each of the modules in detail.

4.1 Frame Alignment

In order to separate the foreground objects from the background, one must align
successive frames in a video so that the ego-motion of the camera can be discarded.
This is done with the help of a frame alignment module that predicts the optical
flow between two successive image frames and the confidence of the predicted
flow. Fig. 4.1 describes the input/output structure of the frame alignment network.
This module takes as input two fixed-size crops of the current and previous input
frames It, It−1 ∈ RH×W , where H and W are the input image height and width
respectively. Since the sky is mostly textureless, it is not great for computing the
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4. Aircraft Detection and Tracking

Figure 4.1: Frame alignment module with the inputs and outputs. The actual inputs to
the module are cropped from the bottom-center of the images (shown in dashed-red) to
provide good features for the optical flow estimate.

background flow. The input images are thus cropped from the center-bottom (thus
covering most of the high-texture details present below the horizon) using a fixed-
size crop of 2048× 1280 (see dashed red lines in Fig. 4.1). The backbone architecture
is ResNet-34 with two prediction heads: (1) optical flow offsets Ft ∈ R2×H×W , (2)
confidence heatmap of offsets Ct ∈ RH×W . The prediction is made at 1/32 scale of
the input. Low confidence offset predictions are rejected. Based on the flow offsets,
current image points pt can be equated with the previous image points pt−1 as:

pt = Htpt−1 (4.1)

where pt, pt−1 are in homogeneous coordinates and Ht is an affine homography
from the previous frame to the current. Ht is a 3× 3 matrix estimated from the
over-determined system of eqn 4.1.

The network is trained using images from the AOT dataset. 75% of the input
image tuples are created by simulation. The simulation involves generating a
random affine homography by sampling the parameters from a normal distribution.
This random homography is used to warp an image frame and thus create a training
sample. The remaining 25% of the input image tuples are picked as successive
frames from the AOT sequences. The target homography for the neural network
is generated by first computing the Lucas-Kanade optical flow (OpenCV) and
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then using it to find an affine transform. The training objective minimized is the
following:

1
N ∑

(
Ct ◦MSE

(
Ft, F̂t

))
where F̂t and Ft are the predicted and ground truth optical flow respectively, and
MSE denotes the mean squared error.

Fig. 4.2 shows the visualization of successive frame differencing (i.e., back-
ground subtraction) with and without frame alignment. We can clearly observe that
with frame alignment, the background subtraction result is much better, whereas if
we naively subtract successive frames, a lot of noisy artifacts, especially below the
horizon, are seen.

Figure 4.2: Successive frame differencing (background subtraction) with (right image)
and without (left image) frame alignment. This snapshot is taken from a sequence in the
TartanX6C dataset.

4.2 Detection

The detection architecture is cascaded where the primary detection module runs
on the full resolution image of size 2448× 2048 (horizontal padding of 56px is
applied on each side) and the secondary detection module runs on a smaller crop
of 512× 512 around the top k track outputs (based on confidence) of the primary
module (see Fig. 4.5). For our experiments, we have chosen k = 4. The architecture
of both modules is based on [41, 52]. The inputs to the network are two aligned
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Figure 4.3: The detector is a fully-convolutional architecture with aligned input frames
and five output maps.

image frames It, It−1 ∈ RH×W . The network is fully-convolutional, and the output
scale is 1/8 of the input resolution. It outputs five maps: (1) center heatmap
encoding the center of the object, (2) bounding box size, (3) center offset from grid
to center of object, (4) track offset of object center from the previous frame, (5)
distance of the object in log scale. Each of these five heads is trained with a separate
loss function. The target center heatmaps during training are rendered using a
Gaussian kernel. For distant objects, this results in a single-pixel render which is
not helpful for training. Therefore a minimum box size of 3× 3 is used for center
rendering. The center heatmap is trained using the focal loss [27] for handling
large class imbalances:

Lh =
1
N ∑

xy

{
(1− Ĥxy)α log Ĥxy, if Hxy = 1
(1− Hxy)βĤα

xy log(1− Ĥxy), otherwise

}

where x, y are the pixel locations in ground-truth and predicted heatmaps H, Ĥ,
and α, β are the focal loss parameters. The peaks of this predicted heatmap are the
object centers, and we choose the corresponding values from the other predicted
heads based on the pixel locations of the peaks. Fig. 4.4 shows visualizations of
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heatmap outputs. The bounding box size prediction is regressed by minimizing
the following objective:

Lsize =
1
N

N

∑
i=1

∣∣ŝpi − si
∣∣

where ŝpi is the predicted box size at pixel location pi and si is the ground truth
box size. L1 error is also minimized for the center offset prediction:

Loff =
1
N

N

∑
i=1

∣∣ôpi − opi

∣∣
where ôpi is the predicted offset and opi is the ground truth offset. The track offset
loss is again an L1 loss:

Ltrack =
1
N

N

∑
i=1

∣∣∣∣T̂p(t)
i
−

(
p(t−1)

i − p(t)
i

)∣∣∣∣
where T̂

p(t)
i

is the predicted track offset and p(t−1)
i − p(t)

i denotes the change in the

location of the center pixel from the previous frame. Finally, the distance prediction
is trained by optimizing the following L2 loss:

Ldist =
1
N

N

∑
i=1

∣∣log D̂pi − log Dpi

∣∣
where D̂pi and Dpi are the predicted and ground truth distance. We predict log
distance because of large distance values and this helps with training stability. The
overall training objective that is minimized is thus:

Ltotal = w1Lh + w2Lsize + w3Loff + w4Ltrack + w5Ldist

where wi (i = 1, . . . , 5) are hyper-parameters.

Since we are dealing with tiny objects, the choice of the backbone architecture
is very crucial for good performance. The key requirements are learning high-
resolution image features that can be used to identify tiny objects against the sky
(mainly) and clutter and also learning enough context to ignore false positives.
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Figure 4.4: Example output heatmaps. The left-most heatmap showing two peaks (heli-
copter on the left and drone on the right) corresponds to the visualized detector output in
Fig. 5.2 (shown later).

The backbone architectures used for the primary and secondary detectors are
HRNet [51], and it is an ideal choice for this problem because it fuses high-level
and low-level parallel convolutional feature maps using a unique fusion operation
that preserves high-resolution features with enough low-level context. Fig. 4.5
shows the overall cascaded detection network. The full-resolution detector predicts
the initial heatmap. Then 512× 512 crops are taken around the top K (K = 4)
heatmap peaks and formed into an input batch for the cropped detector. The
cropped detector is typically chosen to be a heavier neural network with more
parameters since it is operating on a lower-resolution image. It is possible to use

Figure 4.5: Cascaded detection with the first lightweight detector operating at full resolu-
tion and the secondary heavier detectors operating on a batch of smaller cropped images
(taken around heatmap peaks). The final output is chosen from the cropped image detector.

an ensemble strategy of multiple cropped detectors (with different backbones)
to combine the predicted heatmaps, using their mean. For this work and our
onboard computational budget, we use a single cropped detector with HRNet as
its backbone. The final heatmap output is used for generating the objects.
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4.3 Training Details

All the neural networks (frame alignment and detection) are trained using the
SGD optimzer [8] with cosine annealing warm restarts [28] as the learning rate
scheduling strategy. 512 × 512 image crops are used to train all the detection
networks. Since they are fully-convolutional, smaller random image-crop pairs
are sufficient to train the networks. The sampling strategy of the image batches
is important for a good overall performance of the detector. In a training batch,
50% samples are chosen with random crops, 25% samples are chosen around
hard false-positives, and the remaining 25% are crops taken around true aircraft
locations. Fig. 4.6 shows the relative learning-rate schedule and locations where
hard false-positive samples are mined for re-training. False-positive predictions

Figure 4.6: Plot showing epochs where hard false positives are mined (right before a
"warm restart").

during training with a confidence score over 0.2 are saved for mining and are
sampled for training in later epochs to improve the precision of the model. The
models were trained on a Tesla P100 GPU with 16GB of GPU memory.

4.4 Tracking

We explored two approaches for tracking detected aircraft, both belonging to the
tracking-by-detection class of algorithms [49] for multi-object tracking. The first
approach, called SORT [3], is used as the baseline tracker for YOLOv5. The second
approach is based on the offset tracking vector predicted by the CenterTrack [52]
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detector.

4.4.1 SORT: Simple Online Realtime Tracking

SORT [3], as the name suggests, is a simple multi-object tracking algorithm. The
strength of this algorithm lies in its simplicity. It uses a combination of the Kalman
Filter and the Hungarian algorithm for tracking. The internal state of every tracked
object is modeled as follows:

x = [u, v, s, r, u̇, v̇, ṡ]

where u, v represents the horizontal and vertical position of the intruder in the
image, while s and r represent the scale and aspect ratio of the intruder bounding
box. Whenever a detection is associated with an existing track, the update-step
of the Kalman Filter is used to update the state with the detection bounding box
coordinates. A constant acceleration model is used for the predict-step.

In the original implementation of SORT, the association metric used is Intersection-
over-Union (IoU). However, the problem under consideration deals with very tiny
objects, and thus the IoU metric becomes very sensitive (value becomes zero due
to no overlap) to even small changes in bounding box position. Therefore, we use
the generalized IoU (GIoU) metric for data association. We use a minimum GIoU
threshold GIoUmin to reject poor matches. Another option is to use the Euclidean
distance between object centers. The data association step assigns detections in
the current frame to the list of existing tracks. This is solved using the Hungarian
algorithm. A tracking management system is used to handle the birth and death
of intruder tracks. New tracks with unique identities are created when objects
enter the image or when current frame detections don’t have a valid associated
track (GIoU < GIoUmin), they are put in a shadow tracking mode for Tshadow

seconds. An existing object which is being shadow tracked leaves the probationary
period only if it is consistently detected (i.e., an assignment is found) for at least
Tshadow seconds. Similarly, when an existing track leaves the image space or is not
associated with any detection for at least Tlost seconds, the track is deleted.

We use SORT along with YOLOv5 as a baseline method for visual detection
and tracking. Table 4.1 outlines the tracking parameter values used for the baseline
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approach with YOLOv5:

Parameter Value Domain
GIoUmin -0.7 [−1, 1]
Tshadow 1.5s (0, ∞)
Tlost 2.0s (0, ∞)

Table 4.1: SORT parameters used in baseline approach

4.4.2 Offset Tracking

The offset tracking algorithm is a greedy algorithm [52] based on the predicted
track offset from the detector. The key idea in this algorithm is to use the track offset
vector to associate current frame detections to a list of existing tracks. Algorithm 1
outlines the offset tracking algorithm. The power of this algorithm lies in its

Algorithm 1 Offset Tracking

T(t−1) ← {(p, s, ID)
(t−1)
j }M

j=1 ▷ tracked objects in previous frame (pos, size, ID)

Ĥ(t) ← {(p̂, d̂)(t)i }
N
i=1 ▷ current frame heatmap peaks and track offsets

T(t) ← ∅ ▷ list of tracked objects for current frame
S← ∅ ▷ set of matched tracks
W ← Cost(Ĥ(t), T(t−1)) ▷ Wij = ∥p̂

(t)
i − d̂(t)

i , p(t−1)
j ∥2

for i← 1, . . . , N do
j← argminj/∈S Wij

κ ← min
(√

ŵiĥi,
√

wjhj

)
if Wij < κ then ▷ κ is a distance threshold

T(t) ← T(t) ⋃ (
p̂(t)

i , ŝ(t)i , ID(t−1)
j

)
▷ propagate matched ID

S← S
⋃{j} ▷ mark j as matched

else
T(t) ← T(t) ⋃ (

p̂(t)
i , ŝ(t)i , IDnew

)
▷ create a new track

end if
end for
return T(t)

simplicity. Using the predicted track offset vector, we subtract the offset from the
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current object center to recover the center location in the previous frame. Then we
compare the previous frame center with the offset-adjusted center and check if the
distance between them falls below a certain threshold κ. If it does, we propagate
the existing track ID to the current detection and mark it as matched. Otherwise,
we spawn a new track ID with the current detection and proceed. The tracking
management paradigm for handling birth and death of tracks is similar to SORT.

4.5 Secondary Classifier

Figure 4.7: Secondary classifier with inputs and outputs.

The secondary classifier is a ResNet-18 module used for false-positive rejection
(see Fig. 4.7). The input to the network is a fixed-size 64x64 crop (padded and
resized) around the bounding boxes detected by the object detectors. It is a binary
classification network that predicts whether the input crop is an aircraft or not.
The training data for this network is collected from the results of the detectors. We
mine false-positive samples to train the classifier for better false-positive rejection.
We use focal loss [27] to train the model (since a training batch contains more
false-positive samples than true positives). The secondary classifier improves the
overall precision of the system. It can also be used to quickly retrain using novel
data rather than training the detector, which would take some time. This enables
one to run the object detectors at a low confidence threshold which improves recall.

4.6 Intruder State Estimation

The final stage of our DAA module is intruder state estimation. This module
maintains an internal state of each intruder detected using a 2D Kalman Filter [20]
with a constant acceleration motion model. When using SORT as a tracker, this
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step is unnecessary because SORT itself maintains an internal KF state. For offset
tracking, this KF is necessary to compute pixel-level velocity and acceleration. The
angular-rate is computed as:

r = θ
√

ẋ2 + ẏ2

where θ is the degree/pixels ratio of the camera, and ẋ, ẏ denotes the pixel velocity
of the object center. This module also computes the time to closest point of approach
for the intruder:

tCPA(i, j) =
tj − ti

−1 +
√

aj
ai

where ak, tk denotes the area of the bounding box and time at frame k respectively.
The formulation is based on [14] and the key idea behind this formulation is that
as the bounding box area of the intruder increases in size (meaning that the object
is getting closer), the tCPA value decreases. tCPA is inversely proportional to the
rate of change of the square root of the bounding box area.

4.7 Summary

In this chapter, we presented our overall system design along with the various
sub-components. In particular, we first describe Stage I of our system, Frame
Alignment. This module takes image crops and produces a sparse optical flow and
confidence map for frame alignment. The key insight here is that the predicted flow
is actually the background optical flow, and thus, it can be used to find background
homography mapping between successive image frames for alignment. Next, we
describe the various components of our detector and how it uses the aligned frames
as input to produce the necessary output maps for generating the bounding boxes.
We then proceed to describe the tracking algorithms used for our method and the
baselines. Finally, we describe our secondary classification module along with the
intruder parameters update step.
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Figure 4.8: System architecture showing the various internal components. Shaded gray
boxes are the modules are the white boxes are the input/output variables.
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Chapter 5

Results

5.1 Qualitative Results

Figures [5.1, 5.2, 5.3, 5.4] show a visual snapshot of the proposed system in action.
The detected bounding box in green is zoomed at the bottom-left corner to show a
zoomed context of the object. The text display embedded with the bounding box
contains information about the intruder being tracked. The legend is as follows: ID:
track-id of the intruder, C: track confidence, T: time to closest point approach (tCPA)
(in most of the images, this is 60s because a median filtered tCPA is computed
which requires a few seconds of tracking before it changes, the max tCPA of 60s
is thus shown), D: intruder distance (in nautical miles), V: angular rate in deg/s.
Fig. 5.1 shows the detection of an intruder DJI M210 drone flying in a near-collision
course above the horizon at a relative velocity of 8m/s. Fig. 5.2 shows an interesting
below-the-horizon detection case. The zoomed-in view shows the difficulty of
background clutter for below-the-horizon cases. Figs. 5.4 and 5.3 shows visual
detection and tracking inflight from within a Cessna. An interesting observation
we have made based on the qualitative results of the system is that we often see
bird detections. Fig. 5.4 shows an example of a bird detection on the right side of
the image. Birds are extremely hard to spot with the naked eye in the test videos,
but our detector has picked up many such birds.
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Figure 5.1: TartanX6C drone-drone encounter sequence with relative velocity of ∼8m/s.
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Figure 5.2: TartanX6C drone-helicopter encounter sequence with relative velocity of
∼40m/s. This shows an example of below-the-horizon detection. The detector also picks
up the hovering filming drone of the encounter on the right.
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Figure 5.3: TartanX6C in-flight Cessna sequence capturing another aircraft in a non-
collision course.
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Figure 5.4: TartanX6C in-flight Cessna sequence chasing another aircraft during takeoff.
Bird detection is observed on the right as well.
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5.2 Quantitative Results

The detection and tracking performance of the proposed method is evaluated on
a held-out subset of 200 flights in the AOT dataset and all the sequences in the
TartanX6C dataset. Siam-MOT [46] is the baseline (based on Siamese multi-object
tracking) provided by [2] and YOLOv5 [50] is trained on the same dataset. The
confidence threshold for prediction was set at 0.5.

5.2.1 Detection and Tracking

Table 5.1 outlines the key detection and tracking metrics over which we evaluate
the methods (some of these metrics are taken from the AOT challenge [2]): For the

Metric Description Domain
P Precision [0, 1]
R Recall [0, 1]
EDR Encounter Detection Rate [0, 1]
FPPI False positives per image ≥ 0
IDSPI Track ID switches per image ≥ 0
ARE Angular rate error ≥ 0 (deg/s)

Table 5.1: Key Performance Metrics

encounter detection rate, an encounter is considered valid if the airborne object
is consistently tracked for at least 3 seconds before its range falls below 2000ft.
Table 5.2 outlines the overall results of the proposed system along with the two
baselines. From the table, it can be deduced that YOLOv5+SORT has the worst
performance. This is because YOLOv5, which is an excellent state-of-the-art object
detector in general, is not the most ideal for detecting small objects. Our system
outperforms the baselines in all the metrics mentioned earlier. The secondary
classifier (SC) is an optional module in our system that can either be used or not.
Using it greatly improves the precision of the system while only taking a slight hit
in the recall.

Detecting aircraft above and below the horizon poses significantly different
challenges, the latter being the more difficult due to the presence of background
clutter. Table 5.3 outlines the detection metrics based on above or below the horizon
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Metric Baselines Our System
YOLOv5+SORT Siam-MOT SC: off SC: on

P 0.8436 0.9758 0.9532 0.9916
R 0.3326 0.4253 0.4776 0.4634

EDR 0.8867 0.938 0.9542 0.9639
FPPI 0.0987 0.0050 0.0111 0.0018

IDSPI 0.0872 0.0011 0.0010 0.0009
ARE 1.15 0.89 0.87 0.85

Table 5.2: Comparison of proposed method w/ baselines.

cases. We can observe that the precision is steady across both domains while the
recall is much lower for below-horizon detections being a more difficult task. This
is a key area to improve upon in the future. We can also observe the impact of

Above Horizon Below Horizon
SC: off SC: on SC: off SC: on

P 0.94 0.99 0.94 0.99
R 0.63 0.59 0.38 0.36

FPPI 0.0122 0.0012 0.0175 0.0026
IDSPI 0.0071 0.0073 0.0015 0.0011

Table 5.3: Performance of the proposed system based on metrics calculated separately for
above and below horizon scenarios.

the secondary classifier improving false-positive rejection by reducing the FPPI
number by almost 10x. It however does reduce the recall slightly.

5.2.2 Range Estimation and Angular-rate Error

Fig. 5.5 shows the box plot of the range error in the TartanX6C dataset. The error is
computed as a fraction of the ground truth range. For the TartanX6C dataset we
observe that the median range error obeys the allowable error threshold of 15% up
to a range of 1.5km. Fig. 5.6 shows individual range plots for detected aircraft for
certain sequences in both datasets. We can observe that the range prediction quality
gets worse with increasing object distance, especially with distances of over 1.25km.
Fig. 5.7 shows example angle-rate plots (computed via forward-differencing of the
position) compared to the ground truth (computed using the five-point stencil).
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Figure 5.5: Box plot showing the range estimation error as a fraction of the ground truth
range for different intervals. Dashed red line is the allowable error threshold of 15%
according to ASTM F3442/F3442M. Distance estimation error gets worse with increasing
range.
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Figure 5.6: Range estimation plots compared to ground-truth for two sequences. We note
that the range estimation deteriorates after 1.2km typically. Black line denotes the 15%
error margin (relevant for interpretation with regards to ASTM F3442/F3442M standard)
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Figure 5.7: Angle-rate prediction vs ground truth (in deg/s).

Fig. 5.8 shows the probability of track (recall) of the proposed system based on
range intervals. The probability of track remains more than 95% up to a range of
700m.
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Figure 5.8: P(track) vs range. The probability of track (recall) reduces with increasing
distance. Dashed red line shows the 95% level. P(track) ≥ 95% upto 700m.
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5.3 Summary and Interpretation of Results

In this chapter, we presented some qualitative results (snapshots) of the proposed
visual DAA system on some of the evaluation sequences. Below and above horizon
detection cases were shown, and an interesting case of bird detection was visu-
alized. Individual range estimation and angular-rate plots for sample sequences
from both AOT and TartanX6C dataset were shown along with ground truth. The
system angular-rate error is 0.85deg/s, and the probability of track is more than
95% for objects up to a range of 700m. We further investigate our system based
on quantitative analysis and comparison with two baseline approaches on key
performance metrics defined previously.

Based on our quantitative results, we interpret our results with regard to the
ASTM F3442/F3442M standard [1]. This standard was created for unmanned
aircraft (UA) with a maximum dimension ≤ 25ft, operating at airspeeds below
100kts, and of any configuration or category. This standard specifies surveillance
requirements (based on vehicle configuration) for low risk-ratio UA operations.
In particular, based on multiple simulation studies of near-collision encounters
for different configurations of UA, this standard was created, and it found that
only range estimation and angular-rate error and only two key performance indi-
cators for DAA. It also specifies a minimum intruder tracking probability of 95%.
Although they do not specify how this probability was computed, we interpret
it as the recall value of the tracker (see Fig. 5.8). Based on the recall value, our
system has a probability of track of more than 95% up to a range of 700m (based
on empirical data). We also know that our system angular-rate error is within
0.9deg/s. Thus based on these two error metrics, we can use the standard to check
which classes of aircraft can be used for low risk-ratio operations using our DAA
surveillance system. Table 5.4 outlines the minimum track range requirement
for different autonomous UA specs based on a maximum angular-rate error of
0.9deg/s. Based on Table 5.4 we can observe that our DAA surveillance system
can satisfy low-risk UA operations for two specification categories: (1) (60kts,
31.53deg/s, 250-500ft/min), and (2) (90kts, 21.02deg/s, 250-500ft/min).
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Ownship Specifications Min. Required RangeCruise Speed Turn Rate Vertical Speed
30 kts 63.05 deg/s 250-500 ft/min 1222m
60 kts 10.51deg/s 250-500 ft/min 963m
60 kts 31.53 deg/s 250-500 ft/min 703m (∼ 700m)
90 kts 7.01 deg/s 250-500 ft/min 1018m
90 kts 21.02 deg/s 250-500 ft/min 666m (≤ 700m)

Table 5.4: Required min. detection range with P(track) ≥ 95% based on maximum
angular-rate error of 0.9deg/s for different UA configurations. These values are taken from
the ASTM F3442/F3442M standard.
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Chapter 6

Conclusions and Future Work

6.1 Conclusion

In this thesis, we introduced the general problem of Detect-and-Avoid and why
it is necessary for future operations of small unmanned aerial systems in the
national airspace. We presented prior work in this domain ranging from classical
image processing methods to more modern deep learning-based methods. We
introduced our two-stage visual DAA system that is specifically designed to detect
and track aircraft at long distances (i.e., small objects in high-resolution input
images) with a frame alignment module and fully-convolutional object detector
based on CenterTrack [52]. Our method was evaluated on two real-world datasets
and compared to two baselines for performance evaluation, and we observed that
the proposed method performs significantly better than the baselines. We provide
both qualitative and quantitative results of our system. We also interpreted our
quantitative results with regard to the DAA standard, ASTM F3442/F3442M [1].
The system has a minimum tracking probability of 95% up to a range of 700m and
an overall angular-rate error of 0.85deg/s. Based on these surveillance parameters,
according to the standard, our DAA system can be integrated with two categories of
ownship specifications satisfying low risk-ratio UA operations. The categories are:
(1) min. 60kts cruise speed, min. 31.53deg/s turn rate, min. 250-500ft/min climb
rate, and (2) min. 90kts cruise speed, min. 21.02deg/s turn rate, min. 250-500ft/min
climb rate.
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6.2 Future Work

There are different areas in which this work can be further improved. The broad
categories are: (1) Synthetic Dataset Generation, (2) Multi-frame Detection, and (3)
Optimization for Deployment.

6.2.1 Synthetic Dataset Generation

While the AOT dataset is an excellent dataset for initial training of the detection
models, it is still limited in the number of encounters with intruders. Collecting
real-world data for DAA experiments is costly and time-consuming. Therefore,
innovation in this regard can be done with a smart synthetic dataset generation
pipeline. Relying fully on simulation is not ideal, as we have seen with X-Plane 11
data. Training on full simulation makes it harder for the models to transfer to real-
world images. Therefore a hybrid approach involving simulated aircraft objects
rendered on real-world images would be a great next step to creating a new large-
scale DAA dataset. In the context of the DAA problem, actual intruder aircraft
only occupy a tiny space in the image, and most of it is background. Therefore,
real background images have true problem-domain complexity and can be easily
collected using cameras (i.e., the X6C setup) onboard a drone or some other aircraft.
Obtaining a variety of different foreground objects, such as intruder aircraft, can
be very hard to obtain but is easy to simulate using rendering. Computer graphics
techniques such as match moving can be used to achieve this task.

6.2.2 Frame Alignment Replacement

When working with a fixed computational budget such as our use-case, it might
be better to replace the optical flow-based frame alignment with hardware-based
solutions such as using IMU/Gyro readings along with the camera model to
estimate the ownship ego-motion.
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6.2.3 Multi-frame Detection

Our current method relies on only two successive frames for alignment, and then
both the frames are passed as inputs to the detector. In order to boost the perfor-
mance of below-horizon detections, the cropped resolution (512× 512) detectors
can potentially use more than two frames as input to boost the object signal within
the background clutter. This can be done by extending the CenterTrack [52] ar-
chitecture to accommodate more than two frames as input. However, this would
require an extra computational burden along with GPU memory, and a trade-off
analysis needs to be performed in terms of computation and performance.

6.2.4 Ensemble Models

The overall performance of the detector can be improved by using an ensemble of
networks rather than a single one. With different backbones, an ensemble model
would be more powerful and accurate. The individual heatmap outputs can be
combined using their mean, and a similar strategy can be applied to the other
output heads as well. This could, however, violate the computational and memory
budget of the hardware, and a trade-off study can be done in this regard.

6.2.5 Extension to other object classes

The current system is only trained on examples of general aviation aircraft and
helicopters. Although our system can reliably pick up drones and birds in the sky,
we can extend our detection and tracking dataset to include drones and birds as
well. The AOT dataset already has a few examples of those classes but without
distance annotations. Since our model jointly learns the distance estimate of
objects, distance annotations are necessary for training good models. Therefore, a
synthetic rendering scheme can help in this regard which can also provide distance
annotations.

Furthermore, patterns of bird motion within the image space is significantly
different from that of aircraft and helicopters. Since image-based classification is
challenging for this problem, developing a classifier based on object motion within
the image space might be a direction worth exploring.
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6.2.6 Multi-camera Tracking

Currently, detection and tracking only work for a single camera image. The X6C
payload has six forward-facing cameras spanning a horizontal FOV of 220◦. The
overlap between successive cameras is roughly 10◦. The final goal is to run the sys-
tem on all six cameras and enable tracking across cameras. This can be approached
in two ways. Either all the six images can be fused into one, and then the problem
reduces to the current single-camera case. However, the image resolution can
become pretty large (roughly 14000x2000), and inference might be extremely slow.
The second option is to run inference on a batch of individual camera images and
then solve the association problem across image frames (using a greedy tracking
strategy similar to SORT or Offset Tracking).

6.2.7 Optimization for Deployment

Fig. 6.1 shows the current deployment used for onboard inference on the X6C hard-
ware. We leverage NVIDIA’s DeepStream [36] pipeline for hardware-accelerated

Figure 6.1: Deployment flow diagram for onboard inference on X6C.

encoding/decoding on the NVIDIA Xavier AGX, which is the main compute device
on the X6C device. The detection models are first converted from native PyTorch
code to TorchScript (which generates serializable models that can be loaded in
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non-python-dependent processes, such as C++). We then further convert the Torch-
Script models to TensorRT using the Torch-TensorRT [37] package. This pipeline
traces the computation graph of the neural networks based on the input size and
shape during inference and optimizes the computational flow by freezing the
graph. It also optimizes individual layer operations by combining multiple ops
into one and so on.

On average, we see a 5X improvement in performance speed when using
TensorRT models compared to native PyTorch. However, the current bottleneck of
the system is inefficient memory copies of image buffers between GPU and CPU.
Currently, the images are loaded in GPU memory, but before being sent to the
detector for inference, they are mapped into the CPU and then loaded back into
the GPU via a Torch tensor. This is an expensive operation and can be streamlined
to avoid the unnecessary memory copy to increase the overall FPS of the system.
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