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Abstract— Kinematics-based collision detection is important
for robot motion planning in unstructured terrain. Especially,
planetary rovers require such capability as a single collision
may lead to the termination of a mission. For onboard
computation, typical numeric approaches are unsuitable as they
are computationally expensive and unstable on rocky terrain;
instead, a light-weight analytic solution (ACE: Approximate
Clearance Evaluation) is planning to be used for the Mars 2020
rover mission. ACE computes the state bounds of articulated
suspension systems from terrain height bounds, and assess the
safety by checking the constraint violation of states with the
worst-case values. ACE’s conservative safety check approach
can sometimes lead to over-pessimism: feasible states are
often reported as infeasible, thus resulting in frequent false
positive detection. In this paper, we introduce a computationally
efficient probabilistic variant of ACE (called p-ACE) which
estimates the probability distributions of states in real time.
The advantage of having probability distributions over states,
instead of deterministic bounds, is to provide more flexible and
less pessimistic worst-case evaluation with probabilistic safety
guarantees. Empirically derived distribution models are used to
compute the total probability of constraint satisfaction, which
is then used for path assessment. Through experiments with a
high-fidelity simulator, we empirically show that p-ACE relaxes
the deterministic state bounds without losing safety guarantees.

I. INTRODUCTION

To competently perform motion planning on uneven
terrain, a mobile robot must predict the effect of its
interaction with the environment. The accurate prediction
of this interaction helps planners to make more efficient
plans, reducing the risk of detours and immobilization. It
is particularly important for motion planners of planetary
rovers, which have to drive long distances without being
trapped by terrain hazards. Due to the severe restriction
in radiation-tolerant computational resources, the current
navigation software only relies on the geometrical statistics
of terrain within rover-sized discs [1], [2]. Such simplified
interaction model tends to fail in a cluttered environment,
limiting the use of autonomous navigation mode only in
benign terrain.

In response to the increasing demand for longer
autonomous traversal in complex environments, NASA/JPL
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Fig. 1: An artist’s concept of the Mars 2020 rover exploring a
rocky environment. (Credit: NASA/JPL-Caltech)

Mars 2020 rover (Fig. 1) is planning to use a
new motion-planning algorithm. Approximate Clearance
Evaluation (ACE) [3], [4] is developed as its core algorithm
for estimating the rover-terrain interaction. It is a light-weight
inverse-kinematics solver that computes the bounds of a
kinematic state based on the uncertainty in wheel-terrain
contact. Since ACE conservatively evaluates the worst-case
state in an analytic form, it is guaranteed to be safe, as
well as computationally efficient. However, the conservatism
sometimes makes ACE over-pessimistic: traversable paths
are reported as collisions, especially in terrains with higher
rock abundance. It is mainly because large uncertainty in
wheel placement is directly propagated to the vehicle’s other
states. Such pessimism may result in the excessive reduction
of candidate paths during motion planning.

There have been other efforts in the area of robot
navigation in natural terrain. In the context of kinematics
estimation, the most common approach is to use a numeric
method to iteratively solve the non-linear optimization
problem under various kinematic constraints. Many
physics-based simulators have this capability, such as
ODE (Open Dynamics Engine) [5] and ROAMS (Rover
Analysis, Modeling, and Simulation) [6], [7]. Based on
the numerical kinematics evaluation, motion planning
has been performed for wheeled robots [8], [9] and
tracked robots [10]. In general, the numerical approach
is computationally expensive for motion planning, which
requires thousands of pose evaluations in each planning
cycle, and almost intractable for planetary rovers. Moreover,
the run-time performance changes significantly according to
the complexity of the vehicle model and the terrain shape.

For the realization of a robust yet efficient collision
prediction, this paper presents a probabilistic variant of
ACE (named p-ACE). p-ACE estimates the probability
distributions over vehicle states based on the vehicle
kinematics model and terrain height uncertainty. It has a
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prominent run-time performance by fully exploiting the
analytic formulation in ACE. Based on the state bounds
computed by ACE, we empirically train the distribution
models with Monte-Carlo methods. By having probability
distributions over states instead of deterministic bounds,
we can set more flexible and less pessimistic worst-case
evaluation with probabilistic safety guarantees. The total
probability of constraint satisfaction is used in risk-aware
motion planning. The simulation results with the ROAMS
simulator shows that p-ACE successfully relaxes ACE’s
deterministic bounds without losing safety guarantees.

The rest of paper is structured as follows: In Section II,
we introduce the formulation of ACE and discuss its
conservatism. In Section III, a probabilistic extension of ACE
is presented. Section IV provides the simulation results, and
Section V concludes the paper.

II. APPROXIMATE CLEARANCE ESTIMATOR (ACE)

A configuration of the rover with the rocker-bogie
differential articulation is represented by a 10-element vector

[x,y,z,φ ,θ ,ψ,δl ,δr,βl ,βr] ∈ R10 (1)

where (x,y,z) is the position of the rover center in the
world frame; (φ ,θ ,ψ) is the orientation representing roll,
pitch and yaw; (δ ,β ) is the rocker and bogie angles in
the left and right suspensions. The objective of ACE is to
determine the bounds of these configurations in response
to a pose query (x,y,ψ) in 2D plane under uncertainty in
wheel-terrain contact. This section describes the analytic
solutions presented in [3].

A. Reference Frames

Following the aerospace convention, the body frame Fr of
the rover employs the forward-right-down coordinate system.
The origin is set to the center of middle wheels at the height
of ground contact point when the rover is stationary on the
flat ground. F level

r is defined at the same origin with Fr, but
z-axis aligned with the gravity direction by compensating
the pitch angle. A global reference frame is defined as a
north-east-down coordinate system, denoted by Fw. The
terrain geometry such as a Digital Elevation Map (DEM) is
expressed in this frame. The wheel heights are also described
in this frame, which act as an input for the inverse-kinematics
problem. Note that since z is pointing down, greater wheel
height indicates that the wheel is shifted downward.

B. Rocker-Bogie Articulation Model

The schematic of the rocker-bogie suspension is shown
in Fig. 2. It is a two-link suspension system comprised of
a trailing rocker-arm with one wheel and a bogie with two
wheels pivoted at one end of the rocker arm. According to
the previous Mars rover conventions, we define the rocker
side as the direction of motion.

We start with the bogie link state. The bogie joint height
can be estimated from middle and rear wheel heights (zm,zr)

zb = zm− lbm sinκb(zm,zr) (2)
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Fig. 2: Schematic of a rocker-bogie differential suspension.

where κb(·) denotes the triangular geometry for the bogie
triangle defined as

κ(zm,zr) = ϕm + sin−1
(

zm− zr

lmr

)
(3)

and l(·) and ϕ(·) represent the lengths and angles defined in
Fig. 2. Using the height of bogie joint zb, the rocker joint
height can be computed as

zd = z f − ld f sinκd(z f ,zb) (4)

where κd represents the similar triangular geometry with (3)
but for the rocker link. Given the heights of the wheels and
joints, rocker and bogie angle changes are computed as

δl =−δr =
κd(z fr ,zbr)−κd(z fl ,zbl )

2
(5)

βl = κd(z fl ,zbl )−κb(zml ,zrl )−κd0 +κb0 (6)
βr = κd(z fr ,zbr)−κb(zmr ,zrr)−κd0 +κb0 (7)

where κd0 and κb0 denote the angles of the rocker and bogie
joints when the rover is on a flat plane. The body roll and
pitch angles are obtained as

φ = sin−1
(

zdr − zdl

2yod

)
(8)

θ = κd0−
κd(z fl ,zrl )+κd(z fr ,zrr)

2
(9)

and the height of Fr with respect to Fw by

zo =
zdl + zdr

2
+ xod sinθ cosφ − zod cosθ cosφ (10)

where (xod ,yod ,zod) denotes the nominal position of the right
rocker joint.
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C. State Uncertainty Propagation

The ACE algorithm is designed to quickly estimate the
bounds of the vehicle’s attitude and suspension states.
For an input terrain geometry m and target rover pose
x = (x,y,ψ), ACE determines the bounds of the wheel
heights using terrain data and propagates the bounds to
the vehicle state with kinematic equations described above.
An important observation here is that the extremes of state
bounds correspond to one of 26 = 64 possible combinations
of wheel height extremes. Based on this observation, we
can compute the worst-case states in a closed form. Let us
represent an interval as follows

[x]≡ [x−,x+] = {x ∈ R∗ | x− ≤ x≤ x+} (11)

where symbol R∗ denotes an extended real defined as R∗ =
R∪{−∞,∞}. Using this notation, we express the set of wheel
height intervals

{[z fl ], [zml ], [zrl ], [z fr ], [zmr ], [zrr ]} (12)

for all six wheels. From these wheel height intervals, we
can derive closed-form solutions for other state intervals
([zo], [φ ], [θ ], [δl ], [δr], [βl ], [βr]) using the kinematic relations.
State bounds can be formulated using the wheel height
intervals as follows:

[zb] = [z−m− lbm sinκb(z−m ,z
−
r ), z+m− lbm sinκb(z+m ,z

+
r )] (13)

[zd ] = [z−f − ld f sinκd(z−f ,z
−
b ), z+f − ld f sinκd(z+f ,z

+
b )] (14)

[δl ] =−[δr] (15)

=

[
κ(z−fr ,z

+
br
)−κd(z+fl ,z

−
bl
)

2
,

κ(z+fr ,z
−
br
)−κd(z−fl ,z

+
bl
)

2

]
(16)

[βl ]⊆
[
κd(z−fl ,z

+
bl
)−κb(z+ml

,z−rl
)−κd0 +κb0,

κd(z+fl ,z
−
bl
)−κb(z−ml

,z+rl
)−κd0 +κb0

]
(17)

[βr]⊆
[
κd(z−fr ,z

+
br
)−κb(z+mr ,z

−
rr)−κd0 +κb0,

κd(z+fr ,z
−
br
)−κb(z−mr ,z

+
rr)−κd0 +κb0

]
(18)

[φ ] =

[
sin−1

(
z−dr
− z+dl

2yod

)
, sin−1

(
z+dr
− z−dl

2yod

)]
(19)

[θ ] =

[
κd0−

κd(z+fl ,z
−
bl
)+κd(z+fr ,z

−
br
)

2
,

κd0−
κd(z−fl ,z

+
bl
)+κd(z−fr ,z

+
br
)

2

]
(20)

[zo]⊆

[
z−dl

+ z−dr

2
− zod cos |θ |+ cos |φ |+

+ xod min(sinθ
− cos |φ |−, sinθ

− cos |φ |+),
z+dl

+ z+dr

2
− zod cos |θ |− cos |φ |−

+xod max(sinθ
+ cos |φ |−, sinθ

+ cos |φ |+)
]

(21)

Fig. 3: A screenshot of the ROAMS simulator showing a model
of the Rocky 8 rover.

D. Belly Pan Clearance

Using the vehicle attitude, the unit normal vector of the
rover belly pan in F level

r is given as:

n̂ =
1√

1+ tan2 θ + tan2 φ

 tanθ

− tanφ

1

 (22)

assuming roll and pitch to be the conservative fixed-axis
rotation. The planar function representing the belly pan plane
is given as:

f (x,y) =−x tanθ + y tanφ − c0

√
1+ tan2 θ + tan2 φ (23)

where c0 denotes the nominal clearance when the rover is
place on a flat plane. The plane function f (x,y) is actually the
height of the belly pan point (x,y) in F level

r . The minimum
clearance can be computed by finding the point that has the
smallest vertical gap:

c = min
(x,y)∈B

(H(x,y)− f (x,y)− z+o ) (24)

where H(x,y) is the height of the terrain at point (x,y) and
B is the set of (x,y) pairs that define the belly pan.

E. Conservatism of ACE

The input to ACE is a set of wheel height bounds
from terrain measurements. In the real world scenario, it
is difficult to obtain the accurate measurement of terrain
height, because of sensor noise or occlusions. Therefore, we
typically set margins to ensure that true wheel heights are
actually bounded by measurement intervals. The uncertainty
in wheel heights propagates to the other states of the vehicle
via kinematics equations. Large uncertainties in the estimated
state bounds make ACE over-conservative.

To show the over-conservatism in ACE estimation, we
performed simulations with the ROAMS simulator shown
in Fig. 3. A DEM of the Jezero crater on Mars (a candidate
site for the Mars 2020 mission) is used as a base terrain.
We populate rocks according to the empirical model [11],
which is parameterized by the Cumulative Fractional Area
(CFA) covered by rocks. In the simulation environment, we
drove the Rocky 8 rover model covering the entire terrain and
recorded all vehicle states with ground clearance for every
pose at every simulation step. ROAMS uses the numeric
Newton-Raphson method to solve the kinematic state of the
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Fig. 4: ACE estimation results. A model of the Rocky 8 Rover was driven on a synthetic terrain of the Jezero crater with 5% CFA using
the ROAMS simulator, and the states were recorded at every simulation step. The red line corresponds to the ground-truth state value and
the shaded region represents the intervals between the ACE bounds. The blue lines indicate the allowable state range.
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Fig. 5: Normalized histograms of the all the state variables (left and right rocker angles, left and right bogie angles, roll angle, pitch
angle) computed using (27). The red curve represents the corresponding normal distribution.

rover, as well as performing multi-body dynamics simulation
to accurately model rover behavior on rough terrain. Hence,
we treat the output from ROAMS as ground-truth.

We ran the ACE algorithm to predict state bounds while
driving. Fig. 4 shows the state bounds on a 5% CFA terrain.
The shaded region depicts the uncertainty of the state values.
It can be seen from the plot that the uncertainty span
(i.e., the difference between lower and upper bounds) is
quite high at certain time steps. State validation is done
conservatively by checking if the complete state range is
within its constraint bounds (blue lines in Fig. 4). This
worst-case range validation technique leads to false positives
during collision checking. In other words, it only takes
one state with a large uncertainty to mistakenly report a
collision despite all of the other states being well within
the allowable range. Although this conservative behavior is
preferable for safe operations, it can capture a configuration
that is physically impossible, thereby excessively reducing
path options. We thus introduce the probabilistic variant of
ACE (p-ACE) in the next section, which essentially aims to
reduce the pessimism of ACE while giving a probabilistic
safety guarantee.

III. PROBABILISTIC ACE (P-ACE)

p-ACE aims to relax the hard constraints imposed by
ACE by removing probabilistically unlikely configurations.
In deterministic ACE, if either the lower or the upper bound
of a state violates the constraint bounds then a collision
would be reported regardless of whether its true state is
safe. To mitigate this pessimistic worst-case range validation
of a state, we introduce a probabilistic notion of constraint
satisfaction, where we estimate a probability distribution over
a state, instead of deterministic upper and lower bounds.
Computing a distribution of a kinematic state is an expensive
operation, typically requiring numeric methods for possible
configurations. In order to avoid computationally expensive
operations, we introduce the notion of a normalized state
variable. By empirically verifying that the normalized state
follows a normal distribution, we develop an efficient method
to perform probabilistic state estimation.

A. Problem Formulation

Given a target rover pose x = (x,y,ψ) and a terrain
model m, we want to estimate the probability of constraint
satisfaction of the remaining states ω ∈R7. This probability
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can be expressed as

P(ω ∈Ω|x,m) =
∫

ω∈Ω

p(ω|x,m)dω (25)

where p(ω|x,m) is the joint probability distribution of all
the states and Ω is the allowable range of state values from
safety constraints. The objective of p-ACE is to estimate
the constraint satisfaction probability (25) in response to
queries from motion planners. For readability, we will omit
the symbol m for the rest of paper, assuming that the terrain
model does not change in a single motion planning cycle.

B. Normalized State

To efficiently estimate the probability, we introduce a
concept of normalized state. Given an ACE-bounded state
[ωi]≡ [ω−i ,ω+

i ], we define the normalized state as follows:

ω̂i =
ωi−ω

−
i

ω
+
i −ω

−
i
. (26)

The normalized state ω̂ is a ratio that represents the location
of a state variable ω inside the kinematics-based upper/lower
bounds.

C. Identifying Probability Distributions

To characterize the probability distribution over a
normalized state, we employ a numeric approach based on
offline Monte-Carlo simulations. Here, we use the ROAMS
simulator as in the previous section, but it is straightforward
to extend the approach to any simulations/hardware setups.
We ran simulations on different synthetic Mars terrains
with varying rock distributions (CFA: 1%–10%). Fig. 5
shows the histograms of all the normalized state variables
combining different CFA settings. From these histograms,
we can empirically derive that the normalized state follows
a normal distribution (shown in red)

ω̂i ∼N (µi,σ
2
i ) (27)

where the distribution is parameterized by a state-specific
mean and variance (µi,σ

2
i ).

Assuming the normal distributions over normalized states,
we can derive the probability distribution for i-th state from
definition (27)

p(ωi|x) = N
(
ω
−
i +µi(ω

+
i −ω

−
i ), σ

2
i (ω

+
i −ω

−
i )2) (28)

using the computed ACE bound [ωi] for input pose x.
Note that, although in many cases a random variable will

follow the normal distribution, our method is not limited
to a specific type of distribution. We also stress that the
distribution identification process is performed offline, hence
it does not affect the performance of online state estimation.

D. Estimating Constraint Satisfaction Probability

Since we separately identified the underlying probability
distributions for each state, it is reasonable to assume

variable independence between different states. Under the
independence assumption, (25) is decomposed to

P(ω ∈Ω|x) = ∏
i
P(ωi ∈Ωi|x) (29)

= ∏
i

∫
ωi∈Ωi

p(ωi|x)dωi . (30)

In (28), we derived that each state follows a normal
distribution. Therefore, it is trivial to compute the probability
of satisfaction from the above equation.

E. Extension to Clearance Satisfaction Probability

Once we have estimated the distributions of the suspension
and attitude states, we can extend the probabilistic notion to
clearance. From the definition in (24), the clearance depends
on the attitude of the rover. We propagate the distributions
from attitude to clearance using the linearization of (23):

fl(x,y) =−xθ + yφ − c0 . (31)

The corresponding clearance cl(x,y) is obtained as

cl(x,y) = H(x,y)+ xθ − yφ + c0− z+o . (32)

Here, we observe a major difference in the definition of
clearance compared to the definition in (24). In p-ACE, every
point (x,y) of the belly pan has a probability distribution
of its clearance. In the deterministic definition, we defined
clearance as the minimum vertical gap between the terrain
and the belly pan. In p-ACE, the probability of constraint
satisfaction of clearance (denoted as ωc) is found by taking
the minimum constraint satisfaction probability of all cl(x,y)

P(ωc ∈Ωc|x)≡ min
(x′,y′)∈B

P(cl(x′,y′) ∈Ωc|x) (33)

where Ωc denotes the allowable state range for clearance and
B is defined similarly as in (24).

F. Collision checking along a path

Let X = {x0,x1, · · · ,xk, · · ·} denote a possible candidate
path generated from a motion planning algorithm. The
collision risk of a path can be defined as a simple
probabilistic property

R(X)≡max
k

P(ω /∈Ω|xk) (34)

Note that ω is an extended state including ωc. We define a
threshold r called risk-factor on R(X). The path X is collision
free if R(X)< r.

IV. EXPERIMENTAL RESULTS

A. Probabilistic Collision Estimation

We performed experiments to compare the performances
of p-ACE with ACE. We synthesized multiple Martian
terrains with different rock distributions. For a set of
fixed-orientation poses {x = (x,y,ψ)|ψ = 0}, we ran both
methods, and generated binary/probabilistic collision maps
based on its output. In the probabilistic maps, each pose is
evaluated with a collision risk defined in (34) instead of a
binary feasibility value from ACE. Examples of these maps
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(a) ACE (b) r = 1e-06 (c) r = 1e-04 (d) r = 1e-03

(e) ACE (f) r = 1e-06 (g) r = 1e-04 (h) r = 1e-03

Fig. 6: Risk-aware A* motion planning using ACE and p-ACE. The terrain is a simulation of the Jezero crater with a total map size
of 15m × 15m. CFA level for (a)-(d) is 5% and for (e)-(h) is 7%. p-ACE is executed at three different risk-factors (r) defined in (34).
The sky-blue circle denotes the start state and the deep-blue circle denotes the end state. The blue curve is the optimal path found. The
green arcs denote traversable edges whereas the red arcs denote untraversable edges. We observe that as we increase the risk-factor, the
number of untraversable edges decrease. In (e) due to hard ACE-bounds no path is found whereas in (g) and (h) optimal yet safe paths
are found even when the risk-factor is low (1e−4 and 1e−3, respectively). This shows that p-ACE reduces the pessimism of ACE and
often leading to better and more optimal paths, as seen in (d).

are presented in Fig. 7. Using the probabilistic map, we can
evaluate how likely the configuration will violate constraints,
whereas the ACE collision map only reports if the pose
is safe or not. Needless to say, the ability to quantify the
expectations will help various motion planners that take risk
into account.

We computed statistics from this setup. Fig. 8 shows
the cumulative distribution functions of constraint violation
probabilities for all poses detected as infeasible by
deterministic ACE (i.e., all configurations with P(ω /∈Ω|x)>
0). The constraint violation probability is calculated for each
individual state as well as the joint state. These results
indicate the following: 1) Constraint violation of clearance
contributes most to the overall collision risk than other states
like suspension and attitude angles; 2) Almost 10% of the
unsafe poses detected by ACE has actually very low collision
risk (less than 1%) which can be easily relaxed during
risk-aware motion planning discussed in the next section.

B. Risk-aware Motion Planning
We performed experiments on risk-aware motion planning

with ACE or p-ACE as a collision checker. We used
the A* path planning algorithm with arc-based motion
primitives. Following Mars rover conventions, each motion
is parameterized as an arc with a constant curvature in a
discrete set. The heuristic function for the A* search is
defined as the Euclidean distance between the current pose
and the goal. We restricted our motion planning region to
a 15m × 15m map. As terrain models, we used synthetic
Martian terrain data of the Jezero crater. Various rock
abundance levels were used ranging from 1% to 15% CFA.

0.1

0.5

0.9

0.1

0.5

0.9

Fig. 7: Extension of a binary collision map (ACE) to a probabilistic
collision map (p-ACE). Left: DEM. Middle: ACE collision map in
C-space (black = inaccessible, white = accessible). Right: p-ACE
collision map drew as a heatmap in C-space. Top: CFA 10%.
Bottom: CFA 5%. For all rover poses, the yaw angle is fixed to
ψ = 0 .

We compared ACE and p-ACE at various risk-factors:
1e−6, 1e−4 and 1e−3. For deterministic ACE, collision
checking is done on a pose x by checking if the ranges of all
the states ω are well within bounds of their corresponding
constraints Ω (i.e., ω ∈ Ω). For p-ACE, based on the
risk-factor r, (34) is used to check if a candidate path is
probabilistically safe. For each risk-factor and each CFA
level we ran 100 simulations and measured the probability of
success in path planning. Success here means the ability to
compute a safe path to the goal. Fig. 6 shows representative
simulation results on 5% and 7% CFA. Fig. 9 shows the
probability of success using ACE and p-ACE. It is interesting
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Fig. 8: A cumulative distribution function (CDF) of the constraint
violation probability of states on potentially inaccessible poses
determined by ACE (∀x P(ω /∈Ω|x)> 0). The x-axis is in log-scale.
The figure on the right shows the trend in low probability regions:
[0.002,0.1].
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Fig. 9: A comparison of the probability of success of risk-aware
path planning using ACE and p-ACE at various risk-factors (r) and
CFAs.

to observe that for CFA ≥ 7% deterministic ACE has 0%
success rate, whereas p-ACE with a risk-factor of 1e−3 had
around 50% success rate. Even with the small relaxation of
hard bounding in ACE, the success rate of path planning
is drastically increased. This is a clear indication of the
reduced pessimism involved with p-ACE. Note that all the
tests are run with the Rocky 8 rover model which is a
much smaller rover compared to the Curiosity rover. Hence
it has low success probabilities in higher CFA terrains. The
Curiosity rover however, can operate at > 15% CFA but our
main objective here is to show the improved success rate of
planning using p-ACE.

V. CONCLUSIONS

In this paper, we introduced a probabilistic variant of
ACE for kinematic state estimation of articulated suspension
rovers. We discussed the over-pessimism involved in the
worst-case range validation of states in ACE. We formulated
p-ACE to compute probability distributions of rover states
and use them as a measure for safety assessment. From the
empirical evaluation, we showed that this method relaxes
ACE’s hard bounds at higher rock abundance levels, and
provides a path’s safety probability which can be directly
fed into risk-aware motion planners.
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